logo mit Text lexexakt.de Werbung:
Artikel Diskussion (0)
Grundlagen des Fliegens
(sim.msfs)
    

Inhalt
          1. Die ICAO-Codes
          2. Flughäfen
          3. Flugphysik
             3.1. Die Achsen des Flugzeugs
             3.2. Bestandteile eines Flugzeugs
                3.2.1. Rumpf/fuselage
                3.2.2. Flügel/wings
                3.2.3. Querruder/aileron
                3.2.4. Höhenruder/elevator
                3.2.5. Seitenruder/rudder
                3.2.6. Landeklappen/flaps
                3.2.7. Propeller
                3.2.8. Fahrwerk/Landing gear
                3.2.9. Pitotrohr
                3.2.10. Feststellbremse
                3.2.11. Alternator
             3.3. Instrumente
                3.3.1. COM-Empfänger
                3.3.2. NAV-Empfänger
                3.3.3. Autopilot
                   3.3.3.1. Horizontale Steuerung
                   3.3.3.2. Vertikale Steuerung
                   3.3.3.3. Approach-Modus
                3.3.4. Geschwindigkeitsmesser/Airspeed Indicator
                3.3.5. Höhenmesser/Altimeter
                3.3.6. Künstlicher Horizont/Attitude Indicator (AI)
                3.3.7. Kursindikator/Headingindicator
                3.3.8. Variometer/Vertical Speed Indicator
                3.3.9. VOR/ILS Indicator
                3.3.10. Wendezeiger/Turn and bank indicator
                3.3.11. Transponder
             3.4. Recheneinheiten
             3.5. Torque-Effekt
             3.6. Flughöhen VFR
          4. Wind
             4.1. Windgeschwindigkeiten
             4.2. Maximale Windgeschwindigkeiten
          5. Flugmanöver
             5.1. Standardkurve
             5.2. Steigflug
             5.3. Sinkflug

1. Die ICAO-Codes

Die International Civil Aviation Organization (ICAO) ist eine Organisation der United Nations mit dem Ziel der Entwicklung des Flugverkehrs. Im msfs begegnet uns die ICAO in erster Liniein in den ICAO-Codes mit denen jeder Flughafen bezeichnet ist.

So ist der ICAO-Code für den Flughafen Kassel-Calden EDVK. Dabei steht des E für Europa, das D für Deutschland, das VK für Kassel. Dabei haben auch kleinen Flugplätze einen eindeutigen Code. Für den Flugplatz Marburg-Schönstadt lautet der Code z.B. EDFN.

Bei große Flughäfen folgt auf das D für Deutschland ein zweites D. Z.B EDDF für Frankfurt, EDDH für Hamburg. Militärflughäfen haben an der Stelle des ersten D ein T z.B ETHF für den MilitärFlughafen Fritzlar,.

Kennt man die Codes findet man seine Flughäfen bei der Planung schneller.

Parallel existieren die dreistelligen IATA-Codes, die man auch auf Flugticktes findet. Diese haben aber nur Verkehrsflughäfen (KSF für Kassel, FRA für Frankfurt, PDA für Paderborn etc.) und lassen bereits am Namen auf die zugehörige Stadt schließen.

2. Flughäfen

Jeder, oder fast jeder, Flug beginnt und endet auf einem Flughafen. Flughäfen brauchen wir zum Starten und Landen.

Im msfs gibt es, so kann man es im Internet lesen "bis zu" 37.000 Flughäfen weltweit was für mich plausibel klingt. Das Merrill C. Meigs Field, das uns über viele Versionen des Flightsimulators begleitet hat, gibt es leider nicht mehr da es wohl 2003 geschlossen wurde. Dafür gibt es jede Menge andere Flugplätze und auch Merrill C. Meigs lässt sich mit einem kostenlosen addon wiederbeleben.

3. Flugphysik

Auch wenn man sich mit dem msfs nicht auf einen Real Life Flugschein vorbereitet, helfen ein paar Grundkenntnisse um die Spielerfahrung zu verbessern.

3.1. Die Achsen des Flugzeugs

Ein Flugzeug hat drei Achsen:

LängsachseRollachseAileron Axisrollenengl. roll
Querachse NickachseElevator Axisnickenengl. pitch
Hochachse GierachseRudder Axisgierenengl. yaw

Man spricht auch bei den vorgenannten Bewegungen (in obiger Reihenfolge) auch von Wanken, Stampfen oder Schlingern)

3.2. Bestandteile eines Flugzeugs

Eine Flugzeug besteht aus: Rumpf, Fahrwerk, Flügeln, Höhenruder, Querruder, Seitenruder, Landeklappen und Antrieb (z.B. Propeller). Dazu im Einzelnen:

3.2.1. Rumpf/fuselage

Der Rumpf (engl. fuselage) eines Flugzeugs/Hubschraubers ist der Teil des Fluggerätes der als tragendes Elemente die anderen Teile miteinander verbindet. Insbesondere enthält der Rumpf die Kabine mit dem Cockpit.

3.2.2. Flügel/wings

Wichtiger Bestandteil des Flugzeugs sind die beiden Flügel. Diese sind auf der Oberseite gewölbt und auf der Unterseite flach, so dass vorbeiströmende Luft oberhalb des Flügels schneller strömt als auf der Unterseite, so dass es auf der Oberseite zu einem Unterdruck kommt, der den Flügel anhebt. Man spricht von Auftrieb.

Nebenstehend sieht man recht gut das Flügelprofil einer Cessna 152 aus dem msfs.

Durch die Veränderung des sogenannten Anstellwinkels wird der Auftrieb verändert. Je steile desto stärker ist die Auftrieb. Das Verändern geschieht über das Höhenruder, dass sich hinten am Höhenleitwerk befindet.

Ist der Winkel für Fluggeschwindigkeit zu steil kommt es zu einem sog. Strömungsabriss (engl. stall) und das Flugzeug kippt nach vorne. Die meisten Flugzeuge im msfs warnen mit einem Pfeifton vor dem Höhenabriss. D.h. auf einen Höhenabriss kann man entweder mit einer Erhöhung der Geschwindigkeit oder einer Verringer des Anstellwinkels reagieren.

3.2.3. Querruder/aileron

Die Querruder sind an den Flügeln angebracht - und zwar an jedem Flügel eines. Verbunden sind die Querruder mit dem Yoke. D.h. drehe ich den Yoke nach links wir das Querruder am linken Flügel nach unten und das Querruder am rechten Flügen nach oben bewegt. Entsprechend strömt am linken Flügel schneller als am rechten Flügen, so dass sich der rechte Flügel nach oben und der linke Flügel nach unten bewegt.

3.2.4. Höhenruder/elevator
hoehenruder.html
3.2.5. Seitenruder/rudder

Die Seitenruder befinden sich am Heck des Flugzeugs am Seitenleitwerk und stehen senkrecht.

3.2.6. Landeklappen/flaps
landeklappen.html
3.2.7. Propeller

Im msfs gibt es Flugzeuge mit unterschiedliche Propellertechnik: Propeller deren Neigung fest ist und nicht verstellt werden kann (z.B. Cessna 152 oder 172).

Propeller die über den mittleren Hebel (in der Regel blauer Knopf) in ihrer Neigung (pitch) verstellt werden können (z.B. beechcraft Bonanzan G36).

Und sog. constant speed propeller bei denen die Neigung (pitch) des Propellers immer so verstellt wird, dass die Drehgeschwindigkeit (rpm = revolutions per minute = Umdrehungen pro Minute) gleich bleibt, und bei denen über den mittleren Hebel die Drehzahl eingestellt wird.

Zu dem unterschiedlichen Verhalten dieser drei Arten von Propellern und wie man damit umgeht, wird später erklärt.

constantspeedpropeller.html

3.2.8. Fahrwerk/Landing gear

Das Fahrwerk wird zum Starten und Landen benötigt. Schulflugzeue wie die Cessna 152 oder 172 haben ein festes Fahrwerk, das nicht eingefahren werden kann. etwas größere Flugzeuge haben ein ein-/ausfahrbares Fahrwerk.

3.2.9. Pitotrohr

Das Pitotrohr dient der Geschwindigkeitsmessung. Da bei einem Flugzeug, anders wie bei einem Auto oder Fahrrad die Geschwindigkeit nicht als Produkt Reifenumfang und Umdrehungen des Reifens pro Minute die Geschwindigkeit errechnet werden kann, wird im Pitotrohr der Druck gemessen, den die einströmende Luft verursacht.

Damit es bei niedrigen Temperaturen zu keinen Fehlmessungen kommt kann/muss das Rohr über die pitot heat geheizt werden.

Das zugehörige Anzeigeinstrument ist der Geschwindigkeitsmesser (Airspeed Indicator).

Die über ein Pitotrohr gemessene Geschwindigkeit ist die sog. Angezeigte Geschwindigkeit (Knots Indicated Airspeed) im Gegensatz zu dem True Airspeed.

Die über Pitot gemessene angezeigte Geschwindigkeit, ist ungenau, da sie vom Luftdruck abhängt, der ist z.B. auf höheren Flughöhen niedriger als bei tieferen.

3.2.10. Feststellbremse

Die Festellbreme verhindert das Wegrollen im Parkzustand. Bei der Cessna 152 ist die Bremse bei gezogenem Knopf angezogen und wenn der Knopf vollständig eingeschoben ist, gelöst. Es gibt dabei nur die Positionen gezogen/gelöst.

Short-Cut: Ctrl - Num del ???

3.2.11. Alternator

Mit alternator wird in der Luftfahrt der Generator bezeichnet der bei laufendem Motor für die Stromgewinnung zuständig ist. Pro Turbine/Motor gibt es in der Regel einen Schalter der mit ALT bezeichnet ist und der spätestens nach dem Motorstart zugeschaltet werden muss, um zu verhindern, dass der für den Motor und die Bordelektrik notwendige Strom weiterhin aus der Batterie gezogen wird - was andernfalls relativ schnell zu einem Ausfall aller Systeme nach Entleerung der Batterie führt.

Cessna 152, hier gibt es zwei rote Knöpfe: [ALT] und [BAT], die jeweils ON/OFF geschaltet werden können. Mit [BAT] wird zunächst die Bordelektrik mit Strom aus der Batterie versorgt und dann - Motorstart - der Alternator zugeschaltet und die Batterie wieder geladen.

Der Stromfluss aus der Batterie wird über ein Ampermeter ganz rechts im Cockpit ohne Probleme nur für den Copiloten ablesbar angezeigt. Solange Strom aus der Batterie gezogen wird, leuchtet die darunter liegende rote Lamp. Neigt sich die Batterie dem Ende zu, sollte man den Motor starten und den Alternator anschalten.

Anderfalls irgendwann die Batterie leer ist und eine externe Aufladung notwendig wird. Bzw. im msfs kann man sich mit einem Neustart helfen.

3.3. Instrumente

Im Cockpit sind dann je nach Modell verschiedene Instrumente/Geräte verfügbar:

3.3.1. COM-Empfänger

Der COM-Emfänger ist in jedem Flugzeug eingebaut und dient der Kommunikation mit der Luftverkehrskontrolle (air traffice control).

Der Empfänger verfügt in der Regel über zwei Empfangseinheiten COM1 und COM2. Jede Empfangseinheit verfügt über zwei einstellbare Frequenzen, eine aktive Frequenz (= USE) und eine sog. Standby-Frequenz (= STBY). Diese kann man mit der grauen Taste [<- ->] hin- und her tauschen. Die Frequenzen selbst werden über die Drehknöpfe eingestellt.

Im Bild zu sehen ist das Bendix/King K165, das im msfs in der Cessna 152 eingebaut ist. Links sind die beiden COM-Bedieneinheiten.

Die Empfangseinheiten können getrennt stumm/laut geschaltet werden über die gelben Tasten [1] [2].

In msfs können Frequenzwechsel manuell, wie oben beschrieben, oder über das ATC-Windows vorgenommen werden.

3.3.2. NAV-Empfänger

Der NAV-Empfänger ist meistens in der gleichen technischen Einheit wie der COM-Empfänger verbaut. Im gezeigten Bild besteht der NAV-Empfänger aus den beiden rechten Einheiten. Auch der NAV-Empfänger verfügt über zwei Einheiten und jeweils zwei Frequenzen (NAV1 und NAV2).

Hier gilt das für die COM-Empfänger geschriebene entsprechend es gibt in der Bedienung keinen Unterschied, nur dass den COM-Empfängern ein oder, je nach Maschine, zwei Anzeigeinstrumente für die Kursanzeiger (=VOR-Anzeiger) zugeordnet sind. Für die Funktion siehe unter VOR.

3.3.3. Autopilot

Modernere/besser ausgestattete Flugzeuge verfügen über einen Autopiloten. Dieser kann entweder nur die horizontale Steuerung (einachsige) oder die horizontale und die vertikale (zweiachsige) Steuerung übernehmen.

Die Cessna 152 verfügt nur in der Version von JPLogistics über einen Autopiloten (Modell KAP 140), bei Asobo gibt es einen Autopiloten erst ab der Cessna 172.

3.3.3.1. Horizontale Steuerung

Autopiloten kennen verschiedene Modi. In seiner einfachsten (einachsigen) Form kann er die Flügel in der waagrechten und damit ein Flugzeug stabil halten (ROLL-Modus) oder einen gewählten horizontalen Kurs erreichen und halten (Heading-Modus).

Der Autopilot wird entweder mit der Stromversorgung gemeinsam oderüber einen gesonderten Knopf eingeschaltet, ist damit aber noch nicht aktiviert. Ein Druck auf [AP] aktiviert den Autopiloten. Er kann aber vor dem Aktivieren in einen bestimmten Modus versetzt werden (= armen).

D.h. um einen festen Kurs zu fliegen, ist der Knopf [HDG] zu drücken. Der Kurs wird dann entweder am Kursindikator über den sog. HDG-Knob (rechts am Instrument) oder über einen extra Head-Knob am Glascockpit oder dem Autopiloten eingestellt.

Die Alternative ist die Verfolgung eines von der Navigation vorgegebenen Kurses, das lässt sich mit [NAV] erreichen. Hier ist wichtig die richtige Quelle (VOR1/VOR2/GPS) auszuwählen.

3.3.3.2. Vertikale Steuerung

Bei zweiachsigen Autopiloten ist auch eine vertikale Steuerung, d.h. Höhensteuerung vorgesehen [ALT]. Dabei kann der Autopilot entweder eine aktuelle Höhe halten oder eine vorgegebene Höhe erreichen. Letzteres ist je nach Autopilot dann über den FLC- oder den VS-Modus möglich.

Im letzteren Fall muss dann eine Höhe und eine Sink/Steigrate (sog. Vertikalspeed) vorgegeben werden, dies geschieht über Buttons oder Stellräder mit der Bezeichnung [UP]/[DOWN].

3.3.3.3. Approach-Modus

In der Regel mit der Taste [APR] lässt sich der Approach-Modus aktivieren, d.h. eine kombinierte Horizontale und Vertikale Steuerung z.B. für eine ILS-Landung. Hierfür muss zuvor ein Approach-Verfahren ausgewählt worden sein.

3.3.4. Geschwindigkeitsmesser/Airspeed Indicator
Der Geschwindigkeitsmesser zeigt die Geschwindigkeit in knts an.
Die Bedeutung der zweiten Skala, die um 10 bis 20 knts höher liegt ist mir unklar. Bei 60 knts zeigt sie 70 knts, bei 120 ca. 140.

Mit True Airspeed (tas) wird die "wahre" Geschwindigkeit bezeichnet. Der tas wird auch in knots gemessen.

Der True Airspeed berücksichtigt im Gegensatz zum indicated airspeed zusätzlich den Luftrdruck der einströmenden Luft was mit einem Pitotrohr - anscheinend - nicht möglich ist.

Den TAS braucht man, wenn man Flugzeiten abhängig von Strecke und Geschwindigkeit etc. berechnen will.

D.h. in einem Flugzeug das nur mit einem Pitotrohr ausgestattet ist, muss die Pilotin den TAS ausrechnen. Im Internet kann man nachlesen, dass pro 1000 ft über dem Meereslevel 2 % auf den IAS aufgeschlagen werden. D.h. bei 10.000 ft AMSL 10 %. Aus 70 knts IAS werden dann 77 knts TAS.

3.3.5. Höhenmesser/Altimeter

Der Höhemesser/Altimeter misst und zeigt die Höhe an. Dabei wird die Höhe mittels eines Barometers anhand des Luftdrucks gemessen. Je höher ein Flugzeug fliegt, dass die niedriger ist der Luftdruck der umgebenden Luft, so dass daraus die Höhe abgeleitet werden kann. Der Lufdruck schwankt allerdings abhängig vom Wetter und der sog. Bezugsfläche, d.h. der Fläche für die die Höhe Null ist. Daher muss der Bezugsdruck immer an die aktuelle Situation angepasst werden.

Über Atis wird für die jeweilige Position und Wetterlage der aktuelle Bezugsdruck mitgeteilt.

Künstlicher Horizont/Attitude Indicator (AI)

Das Bild zeigt eine (copyrightfreie) Nasa-Aufnahme eines AI, die Angaben und Skalen entsprechen aber denen eines msfs-Flugzeugs z.B. der Cessna 152.

D.h. wir haben eine im Halbkreis angeordnete Scala mit 5 großen und vier kleinen Markierungen sowie einem zentrierten Pfeil (1) für die Querneigung und waagrechten Strichen für die Längsneigung (2).

Die mittlere Markierung auf der Skala (1) zeigt eine Querneigung von 0 an. D.h. steht der Pfeil auf der mittleren Markierung (wie im Bild), dann beträgt die Querneigung Null, das Flugzeug fliegt gerade aus, es sei denn der Wind drückt es in eine Richtung.Die erste Markierung auf beiden Seiten steht für eine Querneigung von 10, die nächste 20, die große Markierung dann 30, dann 60 und schließlich 90 Grad.

Auf der Skala (2) ist an der Horizontlinie (Übergang vom Himmel (blau) zur Erde (braun)) die Längsneigung abzulesen. Steht sie auf der mittleren (im Bild gelbfarbigen) Linie dann beträgt die Längsneigung Null und das Flugzeug steigt und sinkt nicht, d.h. es hält seine Höhe.

3.3.7. Kursindikator/Headingindicator
kursindikator.html
3.3.8. Variometer/Vertical Speed Indicator

Das Variometer zeigt die Steig/Sinkgeschwindigkeit in 100 ft/Minute an und zwar einmal für up und down (was auf der Skala so vermerkt ist). D.h. steht der Zeige auf 5 up, dann steigt das Flugzeug mit 500 ft pro Minote. D.h. um 1000 ft zu erreichen braucht man zwei Minuten.

3.3.9. VOR/ILS Indicator

Der VOR-Indikator zeigt die Abweichung des tatsächlichen vom gewählten Kurs an, daher auch die englische Bezeichnung Course Deviation Indicator. Der Einstellknopf wird als Omni Bearing Selector (OBS) bezeichnet und wird zur Auswahl des Radials genutzt.

3.3.10. Wendezeiger/Turn and bank indicator

Der Wendezeiger (Turn Coordinator) wirkt auf den ersten Blick so, als würde er ebenso wie der künstliche Horizont auch die Querneigung des Flugzeugs anzeigen. Das ist aber unzutreffend. Der Wendezeiger hat vier Markierungen. Zwei in der Horizontalen und zwei weitere. In der Mitte ist stilisiert ein Flugzeug dargestellt, dessen Flügel im Geradeausflug die beiden horizontalen Markierungen (fast) berühren.

Die anderen beiden Markierungen zeigen jeweils an, wann im Kurvenflug die Querneigung für eine Standardkurve mit 3 Grad Drehgeschwindigkeit (nach links oder rechts) gegeben ist und zwar in Abhängigkeit von der Fluggeschwindigkeit (TAS). D.h. die Durchführung der Berechnung (Querneigugn = TAS/10+7) ist bei funktionierendem Wendezeiger hinfällig, man kann sie aber zur Kontrolle einsetzen.

Im unteren Bereich befindet sich im Wendezeige noch eine sog. Libelle, ähnlich einer Wasserwaage, diese zeigt an, ob das Flugzeug bei der Wendung schiebt oder schmiert. Für eine Standardkurve muss die Libelle in der Mitte zwischen beiden Markierungen stehen.

Wander die Libelle nach links muss mit dem linken Pedal ausgeglichen werden, wandert sie nach rechts dann mit dem rechten. Das wird auch als "den Ball treten" bezeichnet.

3.3.11. Transponder

Der Transponder ist ein Sender, der einen einstellbaren Code (Squawk-Code) an die Flugverkehrskontrolle zu Identifizierung auf dem Radar sendet.

Für die Bedienung verfügt der Transponder entweder über ein eigenständiges Instrument,

oder ist über das Primary Flight-Display zu bedienen, hier ist dann XPDR die Bezeichnung nach der man suchen muss (hier die Cessna 174):

3.4. Recheneinheiten

Die Sprache der Luftfahrt ist englisch und damit auch alle Recheneinheiten.

1 mile
1.609 km

knots (knt) für den Airspeed
1 knt = 1 nm/h = 1,852 kmh = 1,15 mph

D.h. eine Stunde mit 100 knt fliegen bringt uns 115 miles bzw. 185 km vorwärts, eine Stunde mit 70 knt 80,5 miles.

In der Minute 70 knt = 1,92 miles/min und 0,031 miles/sec. D.h. eine halbe Minute mit 70 knt entspricht ca. 1 mile (genau 0,93 miles).

Die Höhe auf den Instrummeten wird in feet (ft.) angegeben 1 ft. sind 30,48 cm. D.h. die deutsche Mindestflughöhe über freiem Land von 150m entspreicht 500 ft über Grund.

Der Luftdruck wird in HPA oder inch gemessen. Die Anzeigen im Flugzeug sind in der Regel in inch.

Die Höhenmessung erfolgt über den Luftdruck Daher muss der Luftdruck immer an den aktuellen Standort angepasst werden um richtige Höhenangaben zu erhalten. Am schnellsten geht dies über die Taste [b],

Ab 5.000 ft auf den Standardluftdruck (1013 hPa = 29,91 inch of mercury) )

3.5. Torque-Effekt

Der Torque-Effekt (Aussprache wie "tork") wird erklärt mit dem Dritten Newtonschen Gesetz. Das zu kennen ist schön, hier aber noch nachzutragen.

Beim Fliegen, d.h. im Flugsimulator, wirkt sich der Torque-Effekt bei Probellerflugzeugen und Hubschraubern aus.

Bei Hubschraubern wirkt sich der Torque-Effekt dadurch aus, dass sich der Rumpf (engl. fuselage) beim Start entgegengesetzt zur Probellerreichtung dreht. D.h. z.B. bei einem H135 dreht sich der Rumpf im Uhrzeigersinn, was über den Heckrotor, der über die Pedale bedient wird kompensiert werden muss.

Bei Propellerflugzeugen, dadurch, dass das Flugzeug beim Start in die dem Propellerlauf entgegengesetzte Richtung zieht was über das Seitenruder kompensiert werden muss, die ebenfalls über die Pedale bedient werden.

3.6. Flughöhen VFR

Die Mindesthöhe für einen VFR-Flug beträgt grundsätzlich 1000 ft (300 m) über Städten, dicht besiedelten Gebieten, Menschenansammlungen, ansonsten 500 ft (150 m) jeweils über Grund bzw. dem höchsten Hindernis.

Die Reiseflughöhe liegt allerdings bei 2000 ft (600m) über Grund. Diese liegt damit im Luftraum Golf mit einer Obergrenze von 2500 ft (außerhalb von Kontrollzonen und Radio Mandatroy Zonen).

Ab 2500 ft beginnt grundsätzlich der kontrollierte Luftraum Echo in diesem muss dann ein Abstand von 1000 ft zu der Wolkenuntergrenze eingehalten werden.

zurück --- weiter

4. Wind

Wind besteht aus Faktoren: Windstärke und Windrichtung. Beides erfährt man über atis in der Form

Wind 270 at 10

D.h. aus der Richtung 270 Grad (= von Westen nach Osten) bläst ein Wind mit 10 kn.

4.1. Windgeschwindigkeiten

knotenBeschreibung
0 knkein Wind/Windstille
1 bis 3 knschwacher Wind
4 bis 6schwacher Wind
7 kn 10schwacher Wind
11 bis 16 knmäßiger Wind
17 kn bis 21frischer Wind
22 kn bis 27starker Wind
28 kn bis 33 knstarker Wind
34 kn bis 40 knSturm
41 kn bis 47 knSturm
48 kn bis 55 knschwerer Sturm
56 kn bis 63orkanartiger Sturm
größer 64 knOrkan

Mit der Piper Arrow war der Einfluss des Windes mit 8 kn schon spürbar. Bis 20 kn aus Richtung 270 waren Start und Landung auf Bahn 26 noch möglich. Mit 40 kn Seitenwind war die Piper III für mich nicht mehr zu starten

4.2. Maximale Windgeschwindigkeiten

Die maximalen Windgeschwindigkeiten hängen vom Flugzeug ab.

5. Flugmanöver

5.1. Standardkurve

Die Standardkurve wird mit 3 Grad pro Sekunde geflogen.

Was bedeutet das? Zunächst dachte ich zum kurven, einfach den Yoke drehen, so ein bisschen wie im Auto, vielleicht - das war schon fortgeschritten - noch ein wenig mit den Pedalen nachhelfen und irgendwie kriegt man das schon hin.

Geht man die Sach etwas ernsthafter an, wird es aber komplizierter. Dann geht es um Querneigung, Überziehgeschwindigkeit und Standardkurve.

Ziel ist es Kurven immer mit einer Geschwindigkeit von 3 Grad pro Sekunde zu fliegen, so dass man nach zwei Minuten einen vollständigen Kreis geflogen hat (60 * 2 *3 = 360 Grad).

Querneigung (in Grad) = True Airspeed (TAS) / 10+7.

Fliege ich mit einem TAS von 100 knt dann beträgt die Querneigung für eine Standardkurve mit 3 Grad pro Minute 17 Grad. Fliege ich mit 60 knt dann nur 13 Grad. Fliege ich dagegen mit 120 knt dann 19 Grad.

Die Querneigung lässt sich am künstlichen Horizont ablesen:

Das Bild zeigt eine (copyrightfreie) Nasa-Aufnahme eines AI, die Angaben und Skalen entsprechen aber denen eines msfs-Flugzeugs z.B. der Cessna 152.

D.h. wir haben eine im Halbkreis angeordnete Scala mit 5 großen und vier kleinen Markierungen sowie einem zentrierten Pfeil (1) für die Querneigung und waagrechten Strichen für die Längsneigung (2).

Die mittlere Markierung auf der Skala (1) zeigt eine Querneigung von 0 an. D.h. steht der Pfeil auf der mittleren Markierung (wie im Bild), dann beträgt die Querneigung Null, das Flugzeug fliegt gerade aus, es sei denn der Wind drückt es in eine Richtung.Die erste Markierung auf beiden Seiten steht für eine Querneigung von 10, die nächste 20, die große Markierung dann 30, dann 60 und schließlich 90 Grad.

Auf der Skala (2) ist an der Horizontlinie (Übergang vom Himmel (blau) zur Erde (braun)) die Längsneigung abzulesen. Steht sie auf der mittleren (im Bild gelbfarbigen) Linie dann beträgt die Längsneigung Null und das Flugzeug steigt und sinkt nicht, d.h. es hält seine Höhe.

Hat man über die Geschwindigkeit die Querneigung errechnet, kann man versuchen über den künstlichen Horizont diese Querneigung zu erreichen. Einfacher zu handaben ist aber Wendezeiger:

Der Wendezeiger (Turn Coordinator) wirkt auf den ersten Blick so, als würde er ebenso wie der künstliche Horizont auch die Querneigung des Flugzeugs anzeigen. Das ist aber unzutreffend. Der Wendezeiger hat vier Markierungen. Zwei in der Horizontalen und zwei weitere. In der Mitte ist stilisiert ein Flugzeug dargestellt, dessen Flügel im Geradeausflug die beiden horizontalen Markierungen (fast) berühren.

Die anderen beiden Markierungen zeigen jeweils an, wann im Kurvenflug die Querneigung für eine Standardkurve mit 3 Grad Drehgeschwindigkeit (nach links oder rechts) gegeben ist und zwar in Abhängigkeit von der Fluggeschwindigkeit (TAS). D.h. die Durchführung der Berechnung (Querneigugn = TAS/10+7) ist bei funktionierendem Wendezeiger hinfällig, man kann sie aber zur Kontrolle einsetzen.

Im unteren Bereich befindet sich im Wendezeige noch eine sog. Libelle, ähnlich einer Wasserwaage, diese zeigt an, ob das Flugzeug bei der Wendung schiebt oder schmiert. Für eine Standardkurve muss die Libelle in der Mitte zwischen beiden Markierungen stehen.

Wander die Libelle nach links muss mit dem linken Pedal ausgeglichen werden, wandert sie nach rechts dann mit dem rechten. Das wird auch als "den Ball treten" bezeichnet.

D.h. um mit der Cessna 152 einen Standardkurve zu fliegen, muss ich als PilotIn nur darauf achten, dass im Wendezeiger der stilisierte Flügel die zweite Markierung links oder rechts berührt und dort auch bleibt.

Parallel ist aber darauf zu achten, dass die Nase gerade und die Libelle in der Mitte bleibt.

5.2. Steigflug

VX Best Angle-of-Climb Speed is the speed which results in the greatest gain of altitude in a given horizontal distance.

VY Best Rate-of-Climb Speed is the speed which results in the greatest gain in altitude in a given time.

5.3. Sinkflug

Werbung:

Auf diesen Artikel verweisen: Software und Hardware * Software und Hardware * Tutorial - Inhaltsverzeichnis